Part Number Hot Search : 
ST726 105K0 4CBTLV3 MJF122 223208 C5250 UT7R995 FAN6961
Product Description
Full Text Search
 

To Download SKW30N60HS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  SKW30N60HS power semiconductors 1 rev. 2.2 sep 08 high speed igbt in npt-technology ? 30% lower e off compared to previous generation ? short circuit withstand time ? 10 s ? designed for operation above 30 khz ? npt-technology for 600v applications offers: - parallel switching capability - moderate e off increase with temperature - very tight parameter distribution ? high ruggedness, temper ature stable behaviour ? pb-free lead plating; rohs compliant ? qualified according to jedec 1 for target applications ? complete product spectrum and pspice models : http://www.infineon.com/igbt/ type v ce i c e off t j marking package SKW30N60HS 600v 30 480j 150 c k30n60hs pg-to-247-3 maximum ratings parameter symbol value unit collector-emitter voltage v ce 600 v dc collector current t c = 25 c t c = 100 c i c 41 30 pulsed collector current, t p limited by t jmax i cpuls 112 turn off safe operating area v ce 600v, t j 150 c - 112 diode forward current t c = 25 c t c = 100 c i f 41 28 diode pulsed current, t p limited by t jmax i fpuls 112 a gate-emitter voltage static transient ( t p <1s, d <0.05) v ge 20 30 v short circuit withstand time 2) v ge = 15v, v cc 600v, t j 150 c t sc 10 s power dissipation t c = 25 c p tot 250 w operating junction and storage temperature t j , t stg -55...+150 time limited operating junction temperature for t < 150h t j(tl) 175 soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 c 1 j-std-020 and jesd-022 2) allowed number of short circuits: <10 00; time between short circuits: >1s. pg-to-247-3 g c e
SKW30N60HS power semiconductors 2 rev. 2.2 sep 08 thermal resistance parameter symbol conditions max. value unit characteristic igbt thermal resistance, junction ? case r thjc 0.5 diode thermal resistance, junction ? case r thjcd 1.29 thermal resistance, junction ? ambient r thja 40 k/w electrical characteristic, at t j = 25 c, unless otherwise specified value parameter symbol conditions min. typ. max. unit static characteristic collector-emitter breakdown voltage v (br)ces v ge =0v, i c =500 a 600 - - collector-emitter saturation voltage v ce(sat) v ge = 15v, i c =30a t j =25 c t j =150 c 2.8 3.5 3.15 4.00 diode forward voltage v f v ge =0v, i f =30a t j =25 c t j =150 c - 1.55 1.55 2.05 2.05 gate-emitter threshold voltage v ge(th) i c =700 a, v ce = v ge 3 4 5 v zero gate voltage collector current i ces v ce =600v, v ge =0v t j =25 c t j =150 c - - - - 40 3000 a gate-emitter leakage current i ges v ce =0v, v ge =20v - - 100 na transconductance g fs v ce =20v, i c =30a - 20 s dynamic characteristic input capacitance c iss - 1500 output capacitance c oss - 203 reverse transfer capacitance c rss v ce =25v, v ge =0v, f =1mhz - 92 pf gate charge q gate v cc =480v, i c =30a v ge =15v - 141 nc internal emitter inductance measured 5mm (0.197 in.) from case l e - 13 nh short circuit collector current 1) i c(sc) v ge =15v, t sc 10 s v cc 600v, t j 150 c - 220 a 1) allowed number of short circuits: <1 000; time between short circuits: >1s.
SKW30N60HS power semiconductors 3 rev. 2.2 sep 08 switching characteristic, inductive load, at t j =25 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) - 20 rise time t r - 21 turn-off delay time t d(off) - 250 fall time t f - 25 ns turn-on energy e on - 0.60 turn-off energy e off - 0.55 total switching energy e ts t j =25 c, v cc =400v, i c =30a, v ge =0/15v, r g =11 ? l 2) =60nh, c 2) =40pf energy losses include ?tail? and diode reverse recovery. - 1.15 mj anti-parallel diode characteristic diode reverse recovery time t rr t s t f - - - 125 20 105 ns diode reverse recovery charge q rr - 0.82 c diode peak reverse recovery current i rrm - 17 a diode peak rate of fall of reverse recovery current during t b di rr /dt t j =25 c, v r =400v, i f =30a, di f /dt =1100a/ s - 580 a/ s 2) leakage inductance l a nd stray capacity c due to test circuit in figure e.
SKW30N60HS power semiconductors 4 rev. 2.2 sep 08 switching characteristic, inductive load, at t j =150 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) - 16 rise time t r - 13 turn-off delay time t d(off) - 122 fall time t f - 29 ns turn-on energy e on - 0.78 turn-off energy e off - 0.48 total switching energy e ts t j =150 c v cc =400v, i c =30a, v ge =0/15v, r g = 1.8 ? l 1) =60nh, c 1) =40pf energy losses include ?tail? and diode reverse recovery. - 1.26 mj turn-on delay time t d(on) - 20 rise time t r - 19 turn-off delay time t d(off) - 274 fall time t f - 27 ns turn-on energy e on - 0.91 turn-off energy e off - 0.70 total switching energy e ts t j =150 c v cc =400v, i c =30a, v ge =0/15v, r g = 11 ? l 1) =60nh, c 1) =40pf energy losses include ?tail? and diode reverse recovery. - 1.61 mj anti-parallel diode characteristic diode reverse recovery time t rr t s t f - - - 190 30 160 ns diode reverse recovery charge q rr - 2.0 c diode peak reverse recovery current i rrm - 24 a diode peak rate of fall of reverse recovery current during t b di rr /dt t j =150 c v r =400v, i f =30a, di f /dt =1250a/ s - 480 a/ s 1) leakage inductance l a nd stray capacity c due to test circuit in figure e.
SKW30N60HS power semiconductors 5 rev. 2.2 sep 08 i c , collector current 10hz 100hz 1khz 10khz 100khz 0a 20a 40a 60a 80a 100a t c =80c t c =110c i c , collector current 1v 10v 100v 1000v 0.1a 1a 10a 100a t p =4s 15s 200s 1ms 50s dc f , switching frequency v ce , collector - emitter voltage figure 1. collector current as a function of switching frequency ( t j 150 c, d = 0.5, v ce = 400v, v ge = 0/+15v, r g = 11 ? ) figure 2. safe operating area ( d = 0, t c = 25 c, t j 150 c; v ge =15v) p tot , power dissipation 25c 50c 75c 100c 125c 0w 50w 100w 150w 2 00w i c , collector current 25c 75c 125c 0a 10a 20a 30a 40a t c , case temperature t c , case temperature figure 3. power dissipation as a function of case temperature ( t j 150 c) figure 4. collector current as a function of case temperature ( v ge 15v, t j 150 c) limited by bond wire i c i c
SKW30N60HS power semiconductors 6 rev. 2.2 sep 08 i c , collector current 0v 2v 4v 6v 0a 10a 2 0a 3 0a 4 0a 5 0a 6 0a 7 0a 8 0a 5v 7v 9v 11v 13v 15v v ge =20v i c , collector current 0v 2v 4v 6v 0a 10a 20a 30a 40a 50a 60a 70a 80a 5v 7v 9v 11v 15v 13v v ge =20v v ce , collector - emitter voltage v ce , collector - emitter voltage figure 5. typical output characteristic ( t j = 25c) figure 6. typical output characteristic ( t j = 150c) i c , collector current 0v 2v 4v 6v 8v 0a 2 0a 4 0a 6 0a 8 0a 150c 25c t j =-55c v ce(sat), collector - emitt saturation voltage -50c 0c 50c 100c 150c 1,0v 1,5v 2,0v 2,5v 3,0v 3,5v 4,0v 4,5v 5,0v 5,5v i c =60a i c =30a i c =15a v ge , gate-emitter voltage t j , junction temperature figure 7. typical transfer characteristic (v ce =10v) figure 8. typical collector-emitter saturation voltage as a function of junction temperature ( v ge = 15v)
SKW30N60HS power semiconductors 7 rev. 2.2 sep 08 t, switching times 0a 10a 20a 30a 40a 50a 10ns 1 00ns t r t d(on) t f t d(off) t, switching times 0? 5? 10? 15? 20? 25? 10 ns 100 ns t f t r t d(off) t d(on) i c , collector current r g , gate resistor figure 9. typical switching times as a function of collector current (inductive load, t j =150c, v ce =400v, v ge =0/15v, r g =11 ? , dynamic test circuit in figure e) figure 10. typical switching times as a function of gate resistor (inductive load, t j =150c, v ce =400v, v ge =0/15v, i c =30a, dynamic test circuit in figure e) t, switching times 0c 50c 100c 150c 10ns 100ns t f t r t d(on) t d(off) v ge(th ) , gate - emitt trshold voltage -50c 0c 50c 100c 150c 1,0v 1,5v 2,0v 2,5v 3,0v 3,5v 4,0v 4,5v 5,0v 5,5v min. typ. max. t j , junction temperature t j , junction temperature figure 11. typical switching times as a function of junction temperature (inductive load, v ce =400v, v ge =0/15v, i c =30a, r g =11 ? , dynamic test circuit in figure e) figure 12. gate-emitter threshold voltage as a function of junction temperature ( i c = 0.7ma)
SKW30N60HS power semiconductors 8 rev. 2.2 sep 08 e , switching energy losses 0a 10a 20a 30a 40a 50a 60a 0 ,0mj 1,0mj 2 ,0mj 3 ,0mj 4 ,0mj 5 ,0mj e off *) e on and e ts include losses due to diode recovery e on * e , switching energy losses 0? 5? 10? 15? 20? 25? 30? 0,0 mj 0,5 mj 1,0 mj 1,5 mj 2,0 mj 2,5 mj 3,0 mj e on * *) eon and ets include losses due to diode recovery e ts * e off i c , collector current r g , gate resistor figure 13. typical switching energy losses as a function of collector current (inductive load, t j =150c, v ce =400v, v ge =0/15v, r g =11 ? , dynamic test circuit in figure e) figure 14. typical switching energy losses as a function of gate resistor (inductive load, t j =150c, v ce =400v, v ge =0/15v, i c =30a, dynamic test circuit in figure e) e , switching energy losses 0c 50c 100c 150c 0 ,0mj 0 ,5mj 1,0mj 1,5mj *) e on and e ts include losses due to diode recovery e ts * e on * e off z thjc , transient thermal resistance 1s 10s 100s 1ms 10ms 100ms 10 -4 k/w 10 -3 k/w 10 -2 k/w 10 -1 k/w single pulse 0.01 0.02 0.05 0.1 0.2 d =0.5 t j , junction temperature t p , pulse width figure 15. typical switching energy losses as a function of junction temperature (inductive load, v ce =400v, v ge =0/15v, i c =30a, r g =11 ? , dynamic test circuit in figure e) figure 16. igbt transient thermal resistance ( d = t p / t ) c 1 = 1 r 1 r 1 r 2 c 2 = 2 r 2 r ,(k/w) , (s) 0.3681 0.0555 0.0938 1.26e-03 0.038 1.49e-04
SKW30N60HS power semiconductors 9 rev. 2.2 sep 08 v ge , gate - emitter voltage 0nc 50nc 100nc 150nc 0v 5v 10v 15v 480v 120v c, capacitance 0v 10v 20v 10pf 100pf 1nf c rss c oss c iss q ge , gate charge v ce , collector - emitter voltage figure 17. typical gate charge ( i c =30 a) figure 18. typical capacitance as a function of collector-emitter voltage ( v ge =0v, f = 1 mhz) t sc , short circuit withstand time 10v 11v 12v 13v 14v 0s 5s 10s 15s i c(sc) , short circuit collector current 10v 12v 14v 16v 18v 0a 50a 100a 150a 200a 250a 300a v ge , gate - emitetr voltage v ge , gate - emitetr voltage figure 19. short circuit withstand time as a function of gate-emitter voltage ( v ce =600v , start at t j = 25c ) figure 20. typical short circuit collector current as a function of gate- emitter voltage ( v ce 600v, t j 150 c)
SKW30N60HS power semiconductors 10 rev. 2.2 sep 08 t rr , reverse recovery time 0a/s 250a/s 500a/s 750a/s 100ns 150ns 200ns 250ns 300ns 350ns 400ns 450ns 500ns i f =60a i f =15a i f =30a q rr , reverse recovery charge 0a/s 250a/s 500a/s 750a/s 1,0c 1,2c 1,4c 1,6c 1,8c 2,0c 2,2c 2,4c 2,6c 2,8c i f =60a i f =15a i f =30a di f /dt , diode current slope di f /dt , diode current slope figure 21. typical reverse recovery time as a function of diode current slope ( v r =400v, t j =150c, dynamic test circuit in figure e) figure 22. typical reverse recovery charge as a function of diode current slope ( v r =400v, t j =150c, dynamic test circuit in figure e) i rr , reverse recovery current 200a/s 400a/s 600a/s 800a/s 0a 4a 8a 12 a 16 a 2 0 a 2 4 a i f =15a i f =30a i f =60a d i rr /dt , diode peak rate of fall of reverse recovery current 200a/s 400a/s 600a/s 800a/s -0a/s -100a/s -200a/s -300a/s -400a/s di f /dt , diode current slope di f /dt , diode current slope figure 23. typical reverse recovery current as a function of diode current slope ( v r =400v, t j =150c, dynamic test circuit in figure e) figure 24. typical diode peak rate of fall of reverse recovery current as a function of diode current slope ( v r =400v, t j =150c, dynamic test circuit in figure e)
SKW30N60HS power semiconductors 11 rev. 2.2 sep 08 i f , forward current 0,0v 0,5v 1,0v 1,5v 2,0v 0a 10a 2 0a 3 0a 4 0a 5 0a 150c 25c t j =-55c v f , forward voltage -50 0 50 100 150 0,0 0,5 1,0 1,5 2,0 i f =15a i f =30a i f =60a v f , forward voltage t j , junction temperature figure 25. typical diode forward current as a function of forward voltage figure 26. typical diode forward voltage as a function of junction temperature z thjc , transient thermal resistance 1s 10s 100s 1ms 10ms 100ms 1 0 -3 k/w 1 0 -2 k/w 1 0 -1 k/w 10 0 k/w single pulse 0.01 0.02 0.05 0.2 0.1 d =0.5 t p , pulse width figure 27. diode transient thermal impedance as a function of pulse width ( d = t p / t ) c 1 = 1 r 1 r 1 r 2 c 2 = 2 r 2 r ,(k/w) , (s) 0.358 9.02*10 -2 0.367 9.42*10 -3 0.329 9.93*10 -4 0.216 1.19*10 -4 0.024 1.92*10 -5
SKW30N60HS power semiconductors 12 rev. 2.2 sep 08 5.44 0.55 6.04 5.49 1.68 3.68 4.17 20.82 16.25 15.70 1.05 3.50 19.80 13.10 3 min 1.90 4.90 2.27 1.07 1.85 1.90 0.238 0.216 0.066 0.145 0.164 0.075 0.820 0.640 0.618 0.022 0.193 0.089 0.042 0.073 0.041 0.075 0.138 0.780 0.516 0.68 6.30 6.00 17.65 2.60 5.10 14.15 3.70 21.10 16.03 20.31 1.35 4.47 2.41 5.16 2.53 1.33 2.11 max 2.16 0.027 0.214 3 0.248 0.236 0.695 0.557 0.102 0.201 0.831 0.631 0.053 0.146 0.799 0.176 min max 0.095 0.203 0.099 0.052 0.083 0.085 0 7.5mm 5 5 0 17-12-2007 03 z8b00003327 2.87 2.87 0.113 0.113 3.38 3.13 0.133 0.123 m m pg-to247-3
SKW30N60HS power semiconductors 13 rev. 2.2 sep 08 figure a. definition of switching times figure b. definition of switching losses i rrm 90% i rrm 10% i rrm di /dt f t rr i f i, v t q s q f t s t f v r di /dt rr q=q q rr s f + t=t t rr s f + figure c. definition of diodes switching characteristics p(t) 12 n t(t) j 1 1 2 2 figure d. thermal equivalent circuit figure e. dynamic test circuit leakage inductance l =60nh a nd stray capacity c =40pf.
SKW30N60HS power semiconductors 14 rev. 2.2 sep 08 published by infineon technologies ag 81726 munich, germany ? 2008 infineon technologies ag all rights reserved. legal disclaimer the information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. with respect to any examples or hint s given herein, any typical values stated herein and/or any information regarding the application of the devic e, infineon technologies hereby disclaims any and all warranties and liabilities of any kind, including without lim itation, warranties of non-infringement of intellectual property rights of any third party. information for further information on technology, delivery terms and conditions and prices, please contact the nearest infineon technologies office (www.infineon.com). warnings due to technical requirements, components may co ntain dangerous substances. for information on the types in question, please contact the nearest infineon technologies office. infineon technologies components may be used in life-support devices or systems only with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. if they fail, it is re asonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of SKW30N60HS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X